|
|
:: สาระน่ารู้ทางสถิติ >> ทฤษฎีระเบียบวิธีสถิติ > การคำนวณค่าสถิติ |
1.12 การคำนวณค่าสถิติ
ค่าสถิติที่นิยมใช้สำหรับสรุปผลข้อมูล วิเคราะห์ข้อมูล
และนำเสนอข้อมูลได้แก่
1. ยอดรวม (Total)
คือ การนำข้อมูลสถิติมารวมกันเป็นผลรวมทั้งหมด เช่น จำนวนประชากรทั้งหมด
ในภาคเหนือ จำนวนคนว่างงานทั้งประเทศ เป็นต้น
2.
ค่าเฉลี่ย (Average, Mean) หมายถึง ค่าเฉลี่ยซึ่งเกิดจากข้อมูลของผลรวมทั้งหมดหารด้วยจำนวนรายการของข้อมูล
เช่น การวัดส่วนสูงของผู้เข้ารับการอบรมสถิติ จำนวน 20 คน สำหรับส่วนสูงของผู้เข้ารับการอบรม
20 คน ที่วัดได้เป็นเซ็นติเมตร มีดังนี
155 |
162 |
165 |
168 |
167 |
158 |
170 |
156 |
173 |
167 |
167 |
154 |
169 |
172 |
153 |
168 |
152 |
157 |
158 |
160 |
ส่วนสูงโดยประมาณของผู้เข้ารับการอบรม คือ
= 
= 
= 162.6 เซนติเมตร
3. สัดส่วน (Proportion)
คือ ความสัมพันธ์ของจำนวนย่อยกับจำนวนรวมทั้งหมด กล่าวคือ ให้ถือจำนวนรวมทั้งหมดเป็น
1 ส่วน เช่น ในการสำรวจคนในหมู่บ้านหนึ่งจำนวน 800 คน เป็นหญิง
300 คน ดังนั้นสัดส่วนของผู้หญิงในหมู่บ้านคือ =
0.37 และสัดส่วนของผู้ชายคือ หรือ เป็นต้น
4. อัตราร้อยละหรือเปอร์เซนต์ (Percentage
or Percent) คือ สัดส่วน เมื่อเทียบต่อ 100 การคำนวณก็ทำได้ง่าย
โดยเอา 100 ไปคูณสัดส่วนที่ต้องการหาผลลัพธ์ก็จะออกมาเป็นร้อยละ
หรือเปอร์เซนต์
ตัวอย่าง ในโรงพยาบาลแห่งหนึ่ง
มีคนไข้อยู่ 750 คน แยกเป็นคนไข้ประเภทต่าง ๆ ดังนี้ คนไข้ โรคทรวงอก
180 คน คนไข้ระบบทางเดินอาหาร 154 คน คนไข้ระบบประสาท 145 คน
คนไข้ โรคตา หู คอ จมูก 112 คน ที่เหลือเป็นคนไข้โรคอื่น ๆ 159
คน เราจะหาร้อยละหรือเปอร์เซนต์ของคนไข้ประเภทต่าง ๆ ได้ดังนี้
คนไข้โรคทรวงอก |
= =
24.0% |
คนไข้ระบบทางเดินอาหาร |
= =
20.5% |
คนไข้ระบบประสาท |
= =
19.3% |
คนไข้
โรคตา หู คอ จมูก |
= =
14.9% |
คนไข้โรคอื่น
ๆ |
= =
21.2% |
|
รวมทั้งหมด
= 100.0% |
5. อัตราส่วน (Ratio) คือ ความสัมพันธ์ของตัวแปรที่มีต่อกันระหว่างตัวแปรสองตัวแปร
เป็น การเปรียบเทียบตัวเลขจำนวนหนึ่งหรือหลายจำนวนกับตัวเลขอีกจำนวนหนึ่ง
ตัวเลขที่เราใช้เปรียบเทียบ ด้วยนั้นเราเรียกว่า ฐาน เราสามารถคำนวณหาอัตราส่วนได้โดยใช้ตัวเลขจำนวนที่เราต้องการจะเปรียบเทียบตั้งหารด้วยตัวฐาน
ตัวอย่างเช่น
อัตราส่วนระหว่าง 502 ต่อ 251
คือ 2 ต่อ 1 ซึ่งเราใช้ตัวเลข 251 เป็นฐาน 502 เป็นตัวเลขที่ต้องการจะเปรียบเทียบกับตัวเลขฐาน
251
หมู่บ้านแห่งหนึ่งมีประชากรทั้งสิ้น 7,530
คน เป็นเพศชาย 4,110 คน เป็นเพศหญิง 3,420 คน จะหาอัตราส่วนของเพศชายต่อเพศหญิงของประชากรในหมู่บ้านนี้จะเป็น
4,110 ต่อ 3,420 คือ 1.2 ต่อ 1 หมายความว่า ในหมู่บ้านนี้มีประชากรเพศชายเป็นจำนวน
1.2 เท่าของจำนวนประชากรเพศหญิง
หมู่บ้านแห่งหนึ่งมีประชากร 759 คน มีเนื้อที่ 30 ตารางกิโลเมตร
ดังนั้น ความหนาแน่น ของประชากรในหมู่บ้านนี้ จะเท่ากับ 25.3
คนต่อตารางกิโลเมตร
|
|
|
|
|